
Nodal-antinodal dichotomy from pairing disorder in d-wave superconductors

Dimitrios Galanakis1 and Stefanos Papanikolaou2

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
2Department of Physics, Cornell University, Ithaca, New York 14853-8150, USA

�Received 22 April 2010; published 10 August 2010�

We study the basic features of the local density of states �LDOS� observed in scanning tunnel microscope
experiments on high-Tc d-wave superconductors in the context of a minimal model of a d-wave superconductor
which has weakly modulated off-diagonal disorder. We show that the low- and high-energy features of the
LDOS are consistent with the observed experimental patterns and, in particular, the anisotropic local domain
features at high energies. At low energies, we obtain not only the scattering peaks predicted by the octet model
�Y. Kohsaka et al., Science 315, 1380 �2007��, but also weak features that should be experimentally accessible.
Finally, we show that the emerging features of the LDOS lose their correspondence with the features of the
imposed disorder, as its complexity increases spatially.
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In recent years, the effect of underlying inhomogeneities
in superconductors has been studied intensively. In the con-
text of high-temperature superconductors �SCs�, checker-
board local density of states �LDOS� oscillations and strong
nanoscale gap inhomogeneity have been observed in scan-
ning tunneling spectroscopy �STS� experiments,1 and signals
in dynamical susceptibility measured by neutron scattering
have been interpreted as stripelike nanoscale modulations of
charge and spin degrees of freedom.2 Even though it is still
not clear whether these modulations are intrinsic or driven
entirely by disorder, it seems plausible that the magnitude of
Tc might be strongly related to the very existence of inho-
mogeneity on the coherence length scale,3,4 and therefore a
deeper understanding of the source of inhomogeneities is
important. In the cases of the compounds La2−xBaxCuO4 and
La2−xSrxCuO4 �with Nd or Eu codoping�, inhomogeneities
take the form of static long-range stripelike spin and charge
modulations.5–8

Tunneling spectroscopy has been used to probe states in
different regions of momentum and energy by the help of the
Fourier-transform STS �FT-STS� and the high-energy fea-
tures of the LDOS. At low energies, in the d-wave supercon-
ducting state near optimal doping, quasiparticle interference
observed by FT-STS is dominated by peaks at well-defined
wave vectors qi which are consistent with a simple model of
Bogoliubov quasiparticles, called the octet model.9,10 Even
though the qualitative features of the octet model are experi-
mentally robust, a quantitative understanding of the ampli-
tude, location, and width of the peaks is not straightforward
to obtain and depends rather sensitively on the nature of the
scattering medium.11 A pointlike scatterer, for example, in an
otherwise homogeneous d-wave SC leads to a landscape of
some spotlike and some arclike dispersive features close to
qi in the FT-STS images,12 whereas experimental data appear
mostly spotlike. At high energies, local unidirectionality has
been observed in domains with size approximately 5a0, close
to the superconductor’s coherence length and the domains
typically alternate in orientation. This behavior is usually
attributed to a disordered charge-density wave �CDW� with
some success on demonstrating the emergence of the LDOS
patterns from the underlying CDW order.13

In Refs. 14 and 15 it was shown that generic off-diagonal
disorder �coupling of the nodal d-wave quasiparticles to an

s-wave order parameter �s� is a relevant operator that leads
to a first-order transition in a system with tetragonal-
orthorhombic symmetry breaking. Therefore, off-diagonal
disorder presents the dominating effect for superconductors
with tendency toward orthorhombic symmetry breaking.
However, when the orthorhombic symmetry is not broken
�due to frustration effects�, it is expected that modulated
forms of the expected disorder should be present, with no
effect at large length scales. In this Rapid Communication
we present an explicit model with off-diagonal, modulated
disorder, which unifies the basic features of the scanning
tunnel microscope �STM� observations into a consistent
framework.

In this model, itinerant fermions are coupled to weak,
off-diagonal disorder, modulated in well-defined domains.
Such a state is characterized by a density wave order. We
motivate the existence of such disorder on the basis of �i� a
phenomenological theory of competing s- and d-order pa-
rameters and �ii� recent mean-field studies on more detailed
states, supporting a modulation of the off-diagonal
disorder.13 First, we show by using first-order perturbation
theory, that the spectrum at low energies and the position of
the nodes remains unchanged, an expected result since at
long length scales the disorder averages to zero. Second, we
find that at low energies the Fourier maps of the LDOS have
peaks that are dispersing according to the octet-model
scattering,11 given that ��s� /�d�1 with the addition of weak
static peaks, bearing strong similarities to the STM experi-
ments’ observations.16 In addition there are static peaks close
to ��3� /5, �� /5�, but these peaks are very weak �since
��s� is very small� and if spatial disorder exists, span a large
region around these wave vectors. Third, we show that at
high energies the LDOS acquires a domain structure that is
locally anisotropic and highly similar to the observed STM
patterns. The order parameter17 we use to identify the aniso-
tropy, shows that by increasing the disorder amplitude, the
anisotropy becomes noticeable at higher energies. Such an-
isotropy is not evident in a system with disorder that respects
the d-wave symmetry. Finally, we show that disorder with
irregular features, coming, for example, from an off-critical
system, has no direct correspondence to the LDOS patterns,
and at high energies there are no local anisotropic features,
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due to the complexity of the high-energy spectrum and in-
duced bound states.18

To motivate the presence of modulated off-diagonal dis-
order, we consider a system that can potentially support both
s- and d-wave orders �s= ��s�ei�s and �d= ��d�ei�d, respec-
tively, and can be described by the Ginsburg-Landau �GL�
functional,

F��d,�s� = − ad��d�2 +
bd

2
��d�4 + Kd���d�2 − as��s�2

+
bs

2
��s�4 + Ks���s�2 + asd��s�d

� + c.c.�

+ bsd��s�2��d�2, �1�

where the first and second lines are the d- and s-wave order
GL functionals, respectively, with as,d ,bs,d ,Ks,d	0. The cou-
pling bsd	0 is the magnitude of the repulsive interaction
which suppresses the s-d mixing. The term proportional to
asd can be written as asd��s���d�cos��s−�d� and is extrem-
ized when asdei��s−�d�=−�asd�. For simplicity, in what follows
we assume that asd
0 and �s=�d and ignore this term.

In the case of a homogeneous system we may drop the
spatial derivatives in the GL functional, Eq. �1�, and mini-
mize it with the choice,

��d
B�2 =

ad

bd

1 − b0/�
1 − b0

2 , �2�

��s
B�2 =

as

bs

1 − b0�

1 − b0
2 , �3�

where �=
ad�bs

as�bd
and bsd=b0

�bsbd.
In an inhomogeneous system and for an appropriate

choice of the parameters, the minimization of the functional
in Eq. �1�, results in rendering domain walls along which
�s=0, asymptotically of zero energy. In this parameter re-
gime, domain walls are in competition with the homoge-
neous state, and their emergence depends sensitively on mi-
croscopic disorder effects, present in the system. In order to
demonstrate this feature, we consider a single boundary
along the y axis and assume that �s�x�=�s

Bf�x�, where f�x�
is an arbitrary decreasing function, defined in �0,�� and
f�0�=0, f���=1. Also, we assume naturally that �s�−x�=
−�s�x�. For simplicity, we assume that �d does not vary
spatially across the boundary �Kd
Ks� so that we can re-
place ��d� with its bulk value. Replacing this form in Eq. �1�
we get the energy Eb of the boundary

Eb = F��d
B,�s� − F��d

B,�s
B�

= C1��s
B�2�KsC3 + bs��s

B�2�1 − C2�� , �4�

where C1=�0
�dx�1− f2�x��, C2= 1

2C1
−1�0

�dx�1− f4�x��, and C3

=C1
−1�0

�dx��xf�x��2. If f�x�
1 then C2

1
2 and the energy is

positive. However the energy of the boundary vanishes in the
limit of high s-d repulsive interactions bsd /Ks→0 and there-
fore it should be stabilized by infinitesimal lattice disorder.
These domain walls which are competing with the homoge-
neous state can be present at distances only larger than the

coherence length scale such that the off-diagonal order pa-
rameter �s is modulated accordingly. Beyond our calcula-
tion, additional motivation for the consideration of modu-
lated mixed SC order parameter comes from microscopically
motivated mean-field states,13 where the coexistence of
modulated mixed order parameters is necessary.

In order to study the effects of such modulations on the
experimentally studied LDOS, we consider an explicit model
of lattice itinerant fermions, in which the Hamiltonian takes
the form,

HF = − t �
	ij
�

�ci�
† cj� + H.c.� + �

i,�
��i�ci↑ci+�↓ + H.c.�

+ �
i

��i
�s�ci↑ci↓ + H.c.� , �5�

where ci� are fermionic operators and �i�=���i�ei�i are com-
plex numbers for the d-wave SC order parameter defined
now at the links �i , i+�� ��=unit vector along the x or y
direction; �=1�−1� for � along x �y��. The order parameter
�i

�s� is chosen to be modulated in space and take the values
����s�� in short-range domains19 �cf. Fig. 1�a��.

For ��s�→0 this model can be studied in perturbation
theory. If �s,d�k� are the Fourier transform of the s and d
wave order parameters, the first order correction to the Green
function is

G1��,k� = �s�0��d�k�
� + �k

��2 - Ek
2�2 , �6�

which has poles at the same frequencies, �= �Ek

= ���k
2 +�k

2, as the unperturbed system. This result shows
that for weak disorder amplitudes, the low-energy properties
of the superconductor and the positions of the nodal points
are unaffected, as it is a well-known experimental fact for the
cuprates.20

In the following, we go beyond perturbation theory and
we study both low- and high-energy features of the model by

FIG. 1. �Color online� Off diagonal disorder and the anisotropy.
�a� A spatial map of the employed off-diagonal disorder for L=40
sites, where black corresponds to +�s and white to −�s. The off-
diagonal component has a weakly disordered modulation wave-
length which is assumed to be close to the superconducting coher-
ence length. In �b�, the order parameter Q�r� of Eq. �9� averaged
over 100 disorder configurations. It shows a strong a peak at 0.8t
and decays slowly at higher energies. The decay is associated with
the fact that the domains become internally homogeneous at very
high energies, even though there is a remaining anisotropy. Given
an experimental resolution, it is clear that decreasing the magnitude
of �s makes the anisotropy observable at higher energies.
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solving it in a self-consistent mean-field manner21 using ex-
act diagonalization on systems of size L�L. The relevant
parameters to our calculation satisfy the hierarchy ��s�

���d�� t with t�400 meV and �d�60–100 meV, which
we believe to be consistent with the cuprates. Equation �5�
can be diagonalized by using a Bogoliubov transformation.
The corresponding Bogoliubov de Gennes equations are
solved iteratively, for fixed ��s� fixed until a self-consistent
solution is found for the d-wave order parameter �i�
=g	ci+�↓

† ci↑
† 
,

� �̂↑ �̂

�̂� − �̂↓
�

�un

vn

 = En�un

vn

 . �7�

The mean-field parameters are updated after each iteration
using the equation

�i� = g�
n

�un,ivn,i+�
� + un,i+�vn,i

� �tanh� En

2T

 , �8�

where the nearest-neighbor interaction g
0 has to be attrac-
tive in order for the d-wave superconductor to be stable. The
coupling g was chosen g�g0=−2.5t so that the self-
consistent average d-wave gap ��d� is 0.26t. The amplitude
of the s-wave disorder is chosen as ��s�=0.05t, unless stated
otherwise.

At low energies, the spectral function of the model �cf.
Fig. 1�a�� is similar to the unperturbed d-wave SC. In order
to study the low-energy features of the LDOS and compare
to the unperturbed case,11,22 we consider a single-site poten-
tial impurity �a change in the chemical potential� of strength
U=0.5t. As shown in Fig. 2, the LDOS contains similar
peaks as the unperturbed system,11 which resemble the basic
features of the octet model.11,16 In addition, there are more
nondispersing peaks at Q= ��� /5, �3� /5� and ��3� /5,
�� /5�. These peaks signify the emergence of the locally
anisotropic density wave, which at low energies has very

weak features. In the presence of spatial disorder, as in the
model of Fig. 1, these peaks cluster around the denoted wave
vectors Q. Experimentally, Kohsaka et al.16 showed that the
observed FT-STS peaks qi are somewhat consistent with
scattering of nodal quasiparticles from the edges of their
equal energy contours. However, the predicted dispersion of
the peaks as a function of energy is clearly inconsistent with
the experimental data with some of the peaks being almost
static �e.g., q2�. Such inconsistencies might be due to the
presence of the additional peaks that our model predicts: in
particular, we predict that the peaks around Q might be
present, experimentally, in the region around the observed
wave vector q2.16 The clear distinction of these disorder
peaks should validate the present model.

The weak disorder we described is adequate to induce
local anisotropic features at high energies. As shown in Fig.
3�a�, the LDOS shows strong anisotropic features and inter-
nal domain structure that resembles the experimental obser-
vations. The large intensity near the domain walls on linelike
structures and the similarity to large parts of the observed
STM maps, signify that our toy description captures impor-
tant experimental facts. Moreover, we define a local order
parameter of the anisotropy17 applied on the LDOS F�r�,

Q�r� = ���x
2 − �y

2�F�r��2 + 4���x�y�F�r��2. �9�

This order parameter, averaged spatially and over disorder
configurations, distinguishes between anisotropic fluctua-
tions of the LDOS. As shown in Fig. 1�b�, the anisotropy
increases monotonically until Eth�0.8t and then decays
slowly at higher energies. The energy threshold where the
anisotropy is maximally visible, is almost independent of the
amplitude of the disorder, but dependent on the d-wave gap
scale �Eth�2�d�. Assuming that the experimental resolution
allows for a low threshold on the identification of the order
parameter �horizontal line in Fig. 1�b�� indicates that the
smaller the amplitude of the off-diagonal disorder, the higher
the energy where the locally anisotropic features of the do-
mains become visible. This observation signifies that the en-
ergy scale ��2�d� where the high-energy domains in STM
experiments become visible can be much larger than the ac-
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FIG. 2. LDOS at low energies. Typical map of the Fourier trans-
form of LDOS at a low energy �=0.75�d is shown, for the pure
5a0 density wave model, and where a potential impurity is added, in
order to compare with the results of Ref. 22. The amplitude of the
Fourier transform of the patterns shows a number of peaks that are
not dispersing with the energy change but their amplitude is weak
and close to the experimentally resolved q2 wave vector �Ref. 16�.
The origin of the peaks is associated with the allowed scattering
wave vectors for a d-wave superconductor in the presence of a
density wave similar with Ref. 22. In that case, the wave vector is
��� /4,0� and �0, �� /4�, here it is ��� /5, �3� /5� and
��3� /5, �� /5�, very close to what has been labeled experimen-
tally as q2.

FIG. 3. �Color online� LDOS at high energies. Spatial map of
the LDOS at �=0.7t�2.7�d is shown in �a�. The pattern that
emerges has strong anisotropic features similar to the experimen-
tally observed ones. Notice the bond-based structure and the local
anisotropy that forms in this case. Such features are robust under
weak disorder. In �b�, the form of the LDOS when the disorder
respects the d-wave symmetry has no evident anisotropic features at
�= t but only a natural modulation, imposed by the modulation of
the coupling.
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tual energy scale which leads to their formation, which it is
just �0.2�d.

Another form of possible superconducting disorder is a
pair-density wave �PDW� such as the one proposed in asso-
ciation to experiments in La2−xBaxCuO4 �Ref. 23� and
Bi2Sr2CaCu2O8+�.24 We investigated the behavior of LDOS
in the presence of such a PDW, by setting ��s�=0 and modu-
lating the coupling g=g0+�g, where �g follows the pattern
of Fig. 1�a� and has a maximum ��g�max=0.05t. As seen in
Fig. 3�b�, there is no evidence of local anisotropy due to the
presence of such disorder.

Given that off-diagonal disorder generates high-energy
bound states which distort the LDOS in complex ways,18 we
studied the behavior of the LDOS in cases where the spatial
form of the disorder has jerky features or where the ampli-
tude has strong variations. We find that when the defined
domains have jerky features, as in a conserved-order param-
eter Ising model near its critical point, the LDOS high-
energy features have complex characteristics with no local
anisotropy at regions where large domains exist �cf. Figs.
4�a� and 4�b��. However, amplitude �with no spatial jerki-
ness� variations in the off-diagonal disorder, as soon as they
have zero global average, do not affect our qualitative con-
clusions.

In conclusion we studied a simple phenomenological
model of itinerant fermions which is able to capture different
features appearing in the STM experiments. The key compo-
nent of the model is the off-diagonal disorder, which is
known to be ubiquitous in systems with tendency toward
orthorhombic distortions �such as Y2−xBaxCuO4 and
La2−xSrxCuO4�, and in other less distorted systems, such as
Bi2Sr2CaCu2O8+� and Ca2−xNaxCuO2Cl2. In our model this
disorder takes the form of an inhomogeneous s-wave disor-
der modulated over distances of a few sites. We find that in
the presence of this disorder the model can explain the non-
dispersive features, which arise from scattering of quasipar-
ticles on the order parameter, the dispersive features which
are the result of quasiparticle interference and more impor-
tantly the bond based anisotropy of the LDOS. We also see
that an off-diagonal disorder of this type does not distort the
form of the LDOS at large distances and low energies, in

contrast to potential impurities.25 We believe that its effect on
the features of the LDOS, should not depend on the driving
mechanism, which could be purely electronic as discussed in
Ref. 13.
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FIG. 4. �Color online� Stability of the anisotropy under strong
spatial disorder. A typical off-critical �T=1.4Tc� spatial map of a
conserved order-parameter Ising model is shown in �a�, which rep-
resents a typical form of strong spatial disorder. Spatial map of the
corresponding LDOS for �= t is shown in �b�. A histogram of the
spectral weight �c� and the anisotropy from Eq. �9� �d� is plotted for
the sites that are labeled black and white in �a�. There is no corre-
lation between the positions of the domains and the value of aniso-
tropy of the LDOS, as it can be seen by comparing the statistical
profile of the anisotropy, due to the presence of a large collection of
bound states generated by the jerky features of the order parameter,
as discussed in Ref. 18.
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